Exercise 3

(a) From the graph of f, state the numbers at which f is discontinuous and explain why.
(b) For each of the numbers stated in part (a), determine whether f is continuous from the right, or from the left, or neither.

Solution

Recall that the condition for a function to be continuous at $x=a$ is

$$
\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a) .
$$

The function is discontinuous at $x=-4$ because the function is not defined there. It's neither continuous from the left nor the right.

$$
\lim _{x \rightarrow-4^{-}} f(x)=\lim _{x \rightarrow-4^{+}} f(x) \neq \text { undefined }
$$

The function is discontinuous at $x=-2$ because the left-hand and right-hand limits are not equal. It is continuous from the left, though.

$$
f(-2)=\lim _{x \rightarrow-2^{-}} f(x) \neq \lim _{x \rightarrow-2^{+}} f(x)
$$

The function is discontinuous at $x=2$ because the left-hand and right-hand limits are not equal. It is continuous from the right, though.

$$
\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)=f(2)
$$

The function is discontinuous at $x=4$ because the left-hand and right-hand limits are not equal. It is continuous from the right, though.

$$
\lim _{x \rightarrow 4^{-}} f(x) \neq \lim _{x \rightarrow 4^{+}} f(x)=f(4)
$$

